DE-MC: A Membrane Clustering Algorithm Based on Differential Evolution Mechanism
نویسندگان
چکیده
A clustering algorithm using the framework of membrane computing is proposed in this paper. The P system used is a cell-like P system of two-layer nested structure: a skin membrane contains several elementary membranes. Each object in elementary membranes represents a group of cluster centers. Objects in the system evolve by using the differential evolution mechanism, and then the global optimal object in the skin membrane is updated by the best objects in all elementary membranes. The cell-like P system can automatically find the best cluster centers for a data set. The proposed DE-MC algorithm is evaluated on an artificial data set and a real-life data set and is further compared with classical k-means algorithm, GA-based clustering algorithm and DE-based clustering algorithm, respectively. The comparison results reveal that the proposed DE-MC algorithm is superior to the other three clustering algorithms in terms of clustering quality and robustness. Key-words: Membrane computing; P systems; Clustering algorithm; Differential evolution. DE-MC: A Membrane Clustering Algorithm 77
منابع مشابه
Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملOPTIMAL DESIGN OF WATER DISTRIBUTION SYSTEM USING CENTRAL FORCE OPTIMIZATION AND DIFFERENTIAL EVOLUTION
For any agency dealing with the design of the water distribution network, an economic design will be an objective. In this research, Central Force Optimization (CFO) and Differential Evolution (DE) algorithm were used to optimize Ismail Abad water Distribution network. Optimization of the network has been evaluated by developing an optimization model based on CFO and DE algorithm in MATLAB and ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملWell Placement Optimization Using Differential Evolution Algorithm
Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014